જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
$964$
$625$
$227$
$232$
$n$ ની ન્યૂનતમ કિમત મેળવો કે જેથી ${\left( {{x^2}\, + \,\frac{1}{{{x^3}}}} \right)^n}$ ના વિસ્તરણમાં $x$ નો સહગુણક $^n{C_{23}}$ થાય ?
${\left( {1 + x} \right)^{1000}} + x{\left( {1 + x} \right)^{999}} + {x^2}{\left( {1 + x} \right)^{998}} + ..... + {x^{1000}}$ ના વિસ્તરણમાં $x^{50}$ નો સહગુણક મેળવો.
જો દ્રીપદી $(2^{1/3} + 3^{-1/3})^n$ ના વિસ્તરણમાં શરૂવાતથી અને છેલ્લેથી છઠ્ઠા પદોનો ગુણોત્તર $1/6$ હોય તો $n$ ની કિમત મેળવો
જો $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ ના વિસ્તરણમાં ચોથું પદ $200$ અને $x > 1$ હોય તો $x$ ની કિમત મેળવો.
${(1 + x)^n}$ ના વિસ્તરણમાં ક્રમિક ત્રણ પદો અનુક્રમે $165, 330$ અને $462$ હોય, તો $n$ મેળવો.